Ноsсhek, E. \& K lemm, W. (1939). Z. anorg. Chem. 242, 63. International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Katz, L. \& Ward, R. (1964). Inorg. Chem. 3, 205.
Lander, J. J. (1951). Acta Cryst. 4, 148.
Morin, F. J. (1959). Phys. Rev. Letters, 3, 34.
Pauw, J. J. van der (1958). Philips Res. Rept. 13, 1.
Perrakis, N. (1927). J. Phys. Radium, VI, 8, 473.

Post, B., Schwartz, R. S. \& Fankuchen, I. (1951). Rev. sci. Instrum. 22, 218.
Rüdorff, W., Walter, G. \& Stadler, J. (1958). Z. anorg. Chem. 297, 1.
Thomas, L. H. \& Umeda, K. (1957). J. Chem. Phys. 26, 239.
Tishchenko, G. N. (1955). Tr. Inst. Kristallogr. Akad. Nauk SSSR, 11, 93.
Warekois, E. P. (1960). J. Appl. Phys. Suppl. 31, 346.

Acta Cryst. (1969). B25, 787

# The Structure of Some Alkaline-Earth Metal Uranates 

By B.O. Loopstra and H. M. Rietveld<br>Reactor Centrum Netherland, Petten, The Netherlands

(Received 17 April 1968)
The structures of $\mathrm{CaUO}_{4}, \mathrm{SrUO}_{4}$ (orthorhombic), $\mathrm{BaUO}_{4}, \mathrm{Ca}_{2} \mathrm{UO}_{5}, \mathrm{Sr}_{2} \mathrm{UO}_{5}, \mathrm{Ca}_{3} \mathrm{UO}_{6}$, and $\mathrm{Sr}_{3} \mathrm{UO}_{6}$ have been, where necessary, further determined and refined from neutron powder diffraction data. Least-squares parameters were obtained by fitting a calculated profile to the observed data. The standard deviations in the atomic positions varied with the number of independent structure parameters from $0.0007 \AA$ for $\mathrm{CaUO}_{4}$ to $0.029 \AA$ for $\mathrm{Sr}_{3} \mathrm{UO}_{6}$.

## Introduction

The crystal structures of $\mathrm{CaUO}_{4}$ (Zachariasen, 1948) and $\mathrm{BaUO}_{4}$ (Samson \& Sillén, 1947) were determined previously with the use of both single-crystal and powder X-ray techniques. $\mathrm{SrUO}_{4}$ (orthorhombic) was found to be isomorphous with $\mathrm{BaUO}_{4}$ (Ippolitova, Simanov, Kovba, Polunina \& Bereznikova, 1959). The rhombohedral form of $\mathrm{SrUO}_{4}$ (Zachariasen, 1948) was found to be formed only in the absence of oxygen (Ippolitova et al., 1959; Cordfunke \& Loopstra, 1967). This phase is probably oxygen-deficient and has therefore been excluded from the present investigation.
$\mathrm{Ca}_{2} \mathrm{UO}_{5}$ and isostructural $\mathrm{Sr}_{2} \mathrm{UO}_{5}$ were solved by X-ray powder methods, but only as regards the metal positions (Sawyer, 1963). $\mathrm{Ca}_{3} \mathrm{UO}_{6}$ and $\mathrm{Sr}_{3} \mathrm{UO}_{6}$, which also are isostructural, were determined from X-ray and neutron diffraction powder data (Rietveld, 1966).

The present investigation was undertaken to determine the oxygen positions in $\mathrm{Ca}_{2} \mathrm{UO}_{5}$ and $\mathrm{Sr}_{2} \mathrm{UO}_{5}$ and to obtain better oxygen coordinates in the other compounds by using neutron diffraction data and the profile refinement technique (Rietveld, 1967, 1968).

## Experimental

All compounds were prepared by heating stoichiometric mixtures of $\mathrm{UO}_{3}$ and the alkaline earth metal carbonates, or nitrates, at $1000^{\circ} \mathrm{C}$ until X-ray powder diagrams showed the product to react no further. The final products contained only a few traces of impurities except $\mathrm{Ca}_{2} \mathrm{UO}_{5}$ where several per cent of $\mathrm{CaUO} \mathrm{H}_{4}$ and $\mathrm{Ca}_{3} \mathrm{UO}_{6}$ were still present even after heating for weeks.

Neutron powder diagrams were obtained under the conditions listed in Table 1. The impurity lines in the diagram of $\mathrm{Ca}_{2} \mathrm{UO}_{5}$ were corrected for by subtracting properly scaled diagrams of $\mathrm{CaUO}_{4}$ and $\mathrm{Ca}_{3} \mathrm{UO}_{6}$ obtained under identical conditions.

## Table 1. Experimental details

$x_{1}$ is the angular divergence of the collimator between the reactor and the monochromator, $\alpha_{3}$ that of the collimator in front of the $\mathrm{BF}_{3}$ detector; $\lambda$ is the wavelength used and $\left(\sin \theta_{m}\right) / \lambda$ the range of observation.

| Compound | $\alpha_{1}$ | $\alpha_{3}$ | $\lambda$ | $(\sin \theta m) / \lambda$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CaUO}_{4}$ | $30^{\prime}$ | $30^{\prime}$ | $2.576 \AA$ | 0.350 |
| $\mathrm{SrUO}_{4}$ | 10 | 10 | 2.566 | 0.350 |
| $\mathrm{BaUO}_{4}$ | 10 | 10 | 2.562 | 0.350 |
| $\mathrm{Ca}_{2} \mathrm{UO}_{5}$ | 10 | 10 | 2.565 | 0.348 |
| $\mathrm{Sr}_{2} \mathrm{UO}_{5}$ | 10 | 10 | 2.565 | 0.333 |
| $\mathrm{Ca}_{3} \mathrm{UO}_{6}$ | 10 | 10 | 2.565 | 0.353 |
| $\mathrm{Sr}_{3} \mathrm{UO}_{6}$ | 5.5 | 10 | 1.103 | 0.373 |

X-ray powder intensities were collected on a Philips diffractometer with $\mathrm{Cu} K \alpha$ radiation. Unit-cell data for all compounds are shown in Table 2.

## Structure determination of $\mathrm{Sr}_{2} \mathbf{U} \mathbf{O}_{5}$ and $\mathbf{C a}_{2} \mathbf{U} \mathbf{O}_{5}$

From the previous X-ray work (Sawyer, 1963), the metal atoms in $\mathrm{Sr}_{2} \mathrm{UO}_{5}$ had been found to occupy the positions given in Table 3. Packing considerations led to initial parameters of the oxygen atoms. These were used to construct four structure models which differed from each other only with regard to the sign of the Sr $y$ parameters. The Sr coordinates of all four models were then refined by a least-squares method (Rietveld,

Table 2. Unit-cell data
Numbers in parentheses refer to standard deviations in units of the last decimal.

|  |  | $\quad b$ | $c$ |
| :--- | :--- | :--- | :--- |
| Substance | $a$ | $b$ | $(6.2683(6) \AA$ |
| $\mathrm{CaUO}_{4}$ | $6.2683(6) \AA$ | $6.2683(6) \AA$ |  |
| $\mathrm{SrUO}_{4}$ | $5.4896(7)$ | $7.9770(9)$ | $8.1297(12)$ |
| $\mathrm{BaUO}_{4}$ | $5.7553(10)$ | $8.1411(21)$ | $8.2335(11)$ |
| $\mathrm{Ca}_{2} \mathrm{UO}_{5}$ | $7.9137(13)$ | $5.4409(7)$ | $11.4482(19)$ |
| $\mathrm{Sr}_{2} \mathrm{UO}_{5}$ | $8.1043(13)$ | $5.6614(8)$ | $11.9185(18)$ |
| $\mathrm{Ca}_{3} \mathrm{UO}_{6}$ | $5.7275(12)$ | $5.9564(8)$ | $8.2982(13)$ |
| $\mathrm{Sr}_{3} \mathrm{UO}_{6}$ | $5.9588(22)$ | $6.1795(22)$ | $8.5535(38)$ |

1966) using the X-ray powder intensities. They were found to converge quickly to only two different models, of which one was clearly favoured by lower values of the agreement factor and the minimum function. This model refined smoothly on subsequent alternate X-ray and neutron data refinements until the X-ray data refinements no longer produced any significant shifts in the parameters. The final refinement was based on the neutron data and is described below.

Table 3. Metal positions in $\mathrm{Sr}_{2} \mathrm{UO}_{5}$ according to Sawyer (1963)

|  | Point position | $x / a$ | $y / b$ | z/c |
| :---: | :---: | :---: | :---: | :---: |
| U(1) | 2 (a) | 0 | 0 | 0 |
| U(2) | 2 (b) | $0 \cdot 5$ | 0 | 0 |
| $\mathrm{Sr}(1)$ | 4 (e) | $0 \cdot 157$ | 0.028 | 0.328 |
| Sr(2) | 4 (e) | $0 \cdot 343$ | 0.023 | $0 \cdot 640$ |

Because $\mathrm{Ca}_{2} \mathrm{UO}_{5}$ is isostructural with $\mathrm{Sr}_{2} \mathrm{UO}_{5}$, the final $\mathrm{Sr}_{2} \mathrm{UO}_{5}$ parameters were used as initial $\mathrm{Ca}_{2} \mathrm{UO}_{5}$ parameters.

## Structure refinement

In neutron powder diffraction, it is customary to use as least-squares data the integrated values of the diffraction peaks, even when these consist of more than one Bragg reflexion. The loss of information inherent in this technique can, however, be eliminated by using the complete observed powder pattern in a direct manner (Rietveld, 1967). This method determines the estimates of the structure parameters by finding a leastsquares fit between the observed and calculated profile intensities. The contribution of each Bragg reflexion to the profile at position $2 \theta_{i}$ is given as

$$
2 \sqrt{\ln 2} c j F^{2} \exp \left\{-4 \ln 2\left(2 \theta_{i}-2 \theta_{0}\right)^{2} / b^{2}\right\} /\left(V / \pi b \sin 2 \theta_{0} \sin \theta_{0}\right)
$$

where $j$ is the multiplicity, $F$ the structure factor, and $2 \theta_{0}$ the position of the Bragg reflexion; $b$ is the halfwidth of the Bragg peak at position $2 \theta_{0}$ and $c$ an overall scale factor. The quantities $b$ and $2 \theta_{0}$ in this expression have to be determined from an inspection of the powder pattern and from the known values of the unit-cell parameters and the wavelength.

In the present investigation, the above quantities were also refined. To this end, the following expression for the half-width was assumed:

$$
b^{2}=P \tan ^{2} \theta_{0}+Q \tan \theta_{0}+R .
$$

The peak position was expressed in the usual manner as
$2 \theta_{0}=2 \arcsin \left(\sqrt{A h^{2}+B k^{2}+C l^{2}+D k l+E h l+F h k}\right)-z$,
where $z$ is the zero-point position of the counter and $A=4 a^{* 2} / \lambda^{2}, D=8 b^{*} c^{*} \cos \alpha^{*} / \lambda^{2}, \ldots$, all symbols having the normal meaning. During the refinement, proper constraints were introduced between the parameters $A, B, \ldots, F$ to account for the crystal symmetry. The validity of the use of a quadratic function to describe the variation of the half-width is clearly demonstrated by the observed and calculated profile of $\mathrm{CaUO}_{4}$ [Fig.1(a)]. This pattern consists almost completely of single peaks and therefore serves well to show the agreement obtainable with this type of function. In addition, it can be seen that the peak shape is almost exactly Gaussian.

Obviously, this well resolved pattern could equally well have been reduced to integrated intensities, yielding in this way probably the same structure parameters. The only advantage, here, of the profile method lies in the more reliable estimates of the standard deviations due to the larger number of statistically independent data. However, the real potential of the profile method can best be shown in patterns exhibiting severe overlap, e.g. the powder pattern of $\mathrm{Sr}_{2} \mathrm{UO}_{5}$ [Fig.1(b)]. The good agreement between the calculated and the observed profile, even in regions with severe overlap, shows the extent to which the method uses the available information.

The measure of agreement can be expressed as

$$
R_{1}=100 \sqrt{\bar{\Sigma} w\left(I_{\mathrm{obs}}-I_{\mathrm{calc}}\right)^{2} / \Sigma w I_{\mathrm{obs}}^{2}},
$$

where $I_{\text {calc }}$ and $I_{\text {obs }}$ are the calculated and observed intensities at each counter position and $w$ is the corresponding statistical weight. The sums are taken only over those regions of the pattern where Bragg peaks can be expected. An estimate of the more conventional agreement index

$$
R_{2}=100 \Sigma\left|F_{\mathrm{obs}}^{2}-F_{\mathrm{calc}}^{2}\right| / \Sigma F_{\mathrm{obs}}^{2}
$$

can be obtained by splitting the compound peaks into the constituent $F_{\text {obs }}^{2}$ values according to their $F_{\text {calc }}^{2}$ values. This method will produce a lower $R$ value, the more overlap there is in the pattern. However, it still may serve to enable a comparison between the results of the present method and those using integrated powder intensities.

The final values of the structure parameters have been listed in Table 4.

## Discussion of results

An inspection of Table 5 shows the mean standard deviation of the coordinates to increase with an increase in the number of parameters, while the number of statistically independent $I_{\text {obs }}$ values remains practically constant, except for $\mathrm{CaUO}_{4}$. To some extent, this effect could have been expected from the corresponding decrease in the number of degrees of freedom. However, its magnitude is many times too large. A possible explanation is based on the fact that, together with the increase in the number of parameters, there is also an increase in the number of independent Bragg reflexions
which results in a larger amount of overlap. As a consequence, the available information is reduced.

Two of the three scattering lengths of Sr and Ca in Table 4 agree well within the limits set by their standard deviations. Averaging these values gives $b_{\mathrm{Ca}}=$ $0.474(3) \times 10^{-12} \mathrm{~cm}$ and $b_{\mathrm{Sr}}=0.683(7) \times 10^{-12} \mathrm{~cm}$. These determinations, however, are only relative to the scattering lengths of $O$ and $U$, which were taken to be 0.577 and $0.85 \times 10^{-12} \mathrm{~cm}$ respectively. Comparing these scattering lengths, and also the scattering length $b_{\mathrm{Ba}}=0.531(8) \times 10^{-12} \mathrm{~cm}$, with the tabulated values (International Tables for X-ray Crystallography, 1962) of $b_{\mathrm{Ca}}=0.49, b_{\mathrm{Sr}}=0.57$, and $b_{\mathrm{Ba}}=0.52$ (all in units of $10^{-12} \mathrm{~cm}$ ), shows a very large discrepancy for $b_{\text {sr }}$ while the other two do not differ significantly. The same discrepancy has been observed by Willis (1967) for $\mathrm{SrF}_{2}$.


Fig. 1. Observed and calculated neutron powder diffraction patterns measured at $\lambda=2.57 \AA$ for (a) $\mathrm{CaUO}_{4}$ and (b) $\mathrm{Sr}_{2} \mathrm{UO}_{5}$. Dots: observed data, corrected for background. Full curve: calculated pattern.

Table 4. Final least-squares parameters
Numbers in parentheses refer to standard deviations in units of the last decimal.

| Compound | Atom | $x$ | $y$ | $z$ | $\begin{gathered} B \\ \left(\AA^{2}\right) \end{gathered}$ | $\begin{aligned} & \text { Scattering } \\ & \text { length } \\ & \left(10^{-12} \mathrm{~cm}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CaUO}_{4}$ | U | 0.0000 (-) | 0.0000 (-) | $0.0000(-)$ | $0 \cdot 29$ (7) | (10-12m) |
|  | Ca | $0 \cdot 5000$ (-) | $0 \cdot 5000$ (-) | $0 \cdot 5000$ (-) | 0.54 (19) | 0.471 (4) |
|  | $\mathrm{O}(1)$ | $0 \cdot 1118$ (1) | $0 \cdot 1118$ (1) | $0 \cdot 1118$ (1) | 0.42 (7) | 0 |
|  | $\mathrm{O}(2)$ | $0 \cdot 3627$ (1) | $0 \cdot 3627$ (1) | $0 \cdot 3627$ (1) | $0 \cdot 42$ (7) | - |
| $\mathrm{SrUO}_{4}$ | U | 0.0000 (-) | 0.0000 (-) | 0.0000 (-) | $0 \cdot 12$ (9) |  |
|  | Sr | 0.4710 (8) | $0 \cdot 2013$ (4) | 0.2500 (-) | 0.00 (20) | $0 \cdot 693$ (7) |
|  | $\mathrm{O}(1)$ | 0.2998 (7) | 0.9193 (4) | 0.0810 (4) | 0.01 (10) | $0 \cdot 93$ |
|  | O(2) | 0.1726 (9) | $0 \cdot 2500$ (-) | $0 \cdot 0000$ (-) | 0.01 (10) |  |
|  | $\mathrm{O}(3)$ | $0 \cdot 8602$ (8) | $0 \cdot 0300$ (6) | $0 \cdot 2500$ (-) | 0.01 (10) | - |
| $\mathrm{BaUO}_{4}$ | U | 0.0000 (-) | 0.0000 (-) | 0.0000 (-) | 0.00 (11) | - |
|  | Ba | 0.4749 (14) | $0 \cdot 2008$ (8) | 0.2500 (-) | 1.01 (31) | 0.531 (8) |
|  | $\mathrm{O}(1)$ | 0.2939 (8) | 0.9246 (5) | $0 \cdot 0690$ (5) | 0.87 (12) |  |
|  | $\mathrm{O}(2)$ | 0.1515 (12) | $0 \cdot 2500$ (-) | 0.0000 (-) | 0.87 (12) | - |
|  | O(3) | 0.8775 (12) | 0.0276 (8) | 0.2500 (-) | 0.87 (12) | - |
| $\mathrm{Ca}_{2} \mathrm{UO}_{5}$ | U(1) | 0.0000 (-) | 0.0000 (-) | 0.0000 (-) | 0.62 (13) | - |
|  | U(2) | $0 \cdot 5000$ (-) | 0.0000 (-) | 0.0000 (-) | 0.62 (13) | - |
|  | $\mathrm{Ca}(1)$ | $0 \cdot 1592$ (13) | 0.0621 (16) | 0.3200 (10) | 0.55 (25) | 0.447 (6) |
|  | $\mathrm{Ca}(2)$ | 0.3462 (12) | $0 \cdot 9985$ (19) | $0 \cdot 6414$ (8) | 0.55 (25) | $0 \cdot 447$ (6) |
|  | O(1) | 0.4447 (11) | $0 \cdot 3202$ (15) | 0.3267 (7) | $1 \cdot 16$ (12) | - |
|  | $\mathrm{O}(2)$ | 0.8802 (9) | $0 \cdot 2831$ (14) | 0.3532 (7) | $1 \cdot 16$ (12) | - |
|  | $\mathrm{O}(3)$ | 0.6197 (10) | $0 \cdot 3043$ (14) | $0 \cdot 0720$ (8) | $1 \cdot 16$ (12) | - |
|  | $\mathrm{O}(4)$ | 0.0163 (9) | $0 \cdot 2610$ (13) | $0 \cdot 1295$ (7) | $1 \cdot 16$ (12) |  |
|  | $\mathrm{O}(5)$ | $0 \cdot 2507$ (14) | $0 \cdot 1873$ (15) | 0.9953 (9) | $1 \cdot 16$ (12) | - |
| $\mathrm{Sr}_{2} \mathrm{UO}_{5}$ | U(1) | 0.0000 (-) | 0.0000 (-) | $0 \cdot 0000$ (-) | 0.23 (16) |  |
|  | U(2) | $0.5000{ }^{(-)}$ | $0.0000{ }^{(-)}$ | $0 \cdot 0000$ (-) | $0 \cdot 23$ (16) | - |
|  | $\mathrm{Sr}(1)$ | $0 \cdot 1571$ (13) | 0.0747 (13) | $0 \cdot 3181$ (7) | 0.78 (21) | 0.738 (9) |
|  | Sr(2) | 0.3359 (10) | 0.9926 (14) | 0.6379 (6) | 0.78 (21) | 0.738 (9) |
|  | $\mathrm{O}(1)$ | 0.4501 (13) | 0.3215 (18) | 0.3354 (8) | $0 \cdot 17$ (15) | -738) |
|  | $\mathrm{O}(2)$ | 0.8912 (12) | $0 \cdot 2959$ (16) | $0 \cdot 3579$ (8) | 0.17 (15) | _ |
|  | $\mathrm{O}(3)$ | 0.6017 (12) | $0 \cdot 2978$ (17) | 0.0731 (8) | $0 \cdot 17$ (15) | - |
|  | $\mathrm{O}(4)$ | 0.0153 (12) | 0.2573 (17) | $0 \cdot 1176$ (8) | 0.17 (15) | - |
|  | O(5) | $0 \cdot 2499$ (15) | $0 \cdot 1552$ (13) | 0.9956 (10) | $0 \cdot 17$ (15) | - |
| $\mathrm{Ca}_{3} \mathrm{UO}_{6}$ | U | $0 \cdot 2459$ (28) | 0.0000 (-) | $0 \cdot 2519$ (20) | $0 \cdot 30$ (15) |  |
|  | $\mathrm{Ca}(1)$ | $0 \cdot 2621$ (52) | 0.9975 (83) | 0.7488 (37) | 1.06 (20) | 0.476 (5) |
|  | $\mathrm{Ca}(2)$ | 0.2723 (28) | 0.4223 (48) | 0.0123 (15) | 1.06 (20) | 0.476 (5) |
|  | $\mathrm{Ca}(3)$ | 0.7532 (29) | 0.0288 (54) | 0.4761 (15) | 1.06 (20) | 0.476 (5) |
|  | $\mathrm{O}(1)$ | 0.6319 (37) | $0 \cdot 4100$ (52) | 0.5173 (24) | 1.33 (9) | 0 |
|  | O(2) | 0.5605 (32) | $0 \cdot 1618$ (39) | $0 \cdot 1938$ (25) | 1.33 (9) |  |
|  | $\mathrm{O}(3)$ | 0.0747 (39) | $0 \cdot 2744$ (54) | $0 \cdot 3323$ (32) | 1.33 (9) |  |
|  | $\mathrm{O}(4)$ | $0 \cdot 1165$ (33) | 0.0484 (55) | $0 \cdot 0152$ (23) | $1 \cdot 33$ (9) |  |
|  | O(5) | 0.0327 (32) | $0 \cdot 3053$ (38) | $0 \cdot 6942$ (24) | 1.33 (9) |  |
|  | O(6) | $0 \cdot 5740$ (38) | $0 \cdot 1963$ (55) | 0.8252 (32) | $1 \cdot 33$ (9) | - |
| $\mathrm{Sr}_{3} \mathrm{UO}_{6}$ | U | $0 \cdot 2478$ (48) | 0.0000 (-) | $0 \cdot 2472$ (29) | 2.50 (31) |  |
|  | $\mathrm{Sr}(1)$ | 0.2391 (51) | 0.0126 (68) | 0.7546 (30) | 0.12 (17) | 0.674 (7) |
|  | $\mathrm{Sr}_{\mathrm{Sr}}(2)$ | $0 \cdot 2671$ (34) | 0.4975 (52) | $0 \cdot 0066$ (18) | $0 \cdot 12$ (17) | 0.674 (7) |
|  | Sr(3) | 0.7527 (36) | 0.0859 (46) | 0.4803 (20) | 0.12 (17) | 0.674 (7) |
|  | $\mathrm{O}(1)$ | 0.6308 (35) | 0.4511 (48) | $0 \cdot 5243$ (32) | 1.67 (19) | -674 |
|  | $\mathrm{O}(2)$ | $0 \cdot 5048$ (35) | $0 \cdot 1892$ (55) | $0 \cdot 1971$ (37) | 1.67 (19) |  |
|  | $\mathrm{O}(3)$ | $0 \cdot 0893$ (50) | 0.2948 (72) | $0 \cdot 3244$ (34) | 1.67 (19) |  |
|  | $\mathrm{O}(4)$ | $0 \cdot 1505$ (39) | $0 \cdot 0682$ (56) | 0.0173 (33) | 1.67 (19) |  |
|  | O(5) | $0 \cdot 0545$ (34) | $0 \cdot 3444$ (56) | 0.7087 (41) | 1.67 (19) | - |
|  | $\mathrm{O}(6)$ | $0 \cdot 5713$ (49) | $0 \cdot 2381$ (66) | 0.8271 (35) | 1.67 (19) |  |

Table 5. Available information, number of parameters, and accuracy of least-squares results

| Compound | Number of <br> $I_{\text {obs }}$ values | Number of independent <br> Bragg reflexions | Number of <br> parameters | $R_{1}$ index |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |$R_{2}$ index | Mean deviation of |
| :---: |
| coordinates |

Table 6. Coordination of U atoms

|  |  |  | Number <br> of <br> equivalent |
| :---: | :---: | :--- | :---: |
| Compound | Atom(1)-atom(2) | Distance | distances |

A list of U-O distances appears in Table 6. The U atoms in all compounds are 6-coordinated except in $\mathrm{CaUO}_{4}$. In this compound the U-atom coordination is eight. The alkaline-earth metals are in most cases 7coordinated, except in $\mathrm{CaUO}_{4}$, where the Ca atom is 5 -coordinated, and in $\mathrm{Sr}_{3} \mathrm{UO}_{6}$ and $\mathrm{Ca}_{3} \mathrm{UO}_{6}$, where two of the three alkaline-earth-metal atoms are 6-coordinated.

The authors wish to express their gratitude to Dr E.H.P. Cordfunke for preparing the samples and to Dr P. Boldrini for his assistance during the initial stages of the $\mathrm{Sr}_{2} \mathrm{UO}_{5}$ investigation.

## References

Cordfunke, E. H. P \& Loopstra, B. O. (1967). J. Inorg. Nucl. Chem. 29, 51.
International Tables for X-ray Crystallography (1962). Vol. III, p. 229-230. Birmingham: Kynoch Press.
Ippolitova, E. A., Simanov, I. P., Kovba, L. M., Pollinina, G. P. \& Bereznikova, I. A. (1959). Radiokhimiya, 1, 660.

Rietveld, H. M. (1966). Acta Cryst. 20, 508.
Rietveld, H. M. (1967). Acta Cryst. 22, 151.
Rietveld, H. M. (1968). Reactor Centrum Nederland Report no. 104.
Samson, S. \& Sillen, L. G. (1947). Ark. Kemi Min. Geol. 25A, nr. 21.
Sawyer, J. O. (1963). J. Inorg. Nucl. Chem. 25, 899.
Willis, B. T. M. (1967). Private communication.
Zachariasen, W. H. (1948). Acta Cryst. 1, 281.

# Crystal Structure of $\mathbf{Y}_{2} \mathrm{SiBe}_{2} \mathbf{O}_{7}$ 

By S.F.Bartram<br>General Electric Company, Nuclear Systems Programs, Cincinnati, Ohio 45215, U.S.A.

## (Received 15 May 1968)

Diyttrium silicon beryllate, $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$, is tetragonal with $a=7.283 \pm 0.002, c=4.755 \pm 0.001 \AA, Z=2$. Refinement of its crystal structure in space group $P \overline{4} 2_{1} m$ by full-matrix least-squares calculations gave $R=0.096$. Yttrium atoms lie within distorted square oxygen antiprisms and silicon atoms in isolated $\mathrm{SiO}_{4}$ tetrahedra. Beryllium atoms occupy distorted tetrahedra linked at one corner to form double $\mathrm{Be}_{2} \mathrm{O}_{7}$ pyramids oriented upward or downward relative to the $c$ axis. $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$ is isostructural with silicate minerals of the melilite family, such as $\mathrm{Ca}_{2} \mathrm{SiAl}_{2} \mathrm{O}_{7}$ and $\mathrm{Ca}_{2} \mathrm{MgSi}_{2} \mathrm{O}_{7}$. The $\mathrm{M}_{2} \mathrm{O}_{7}$ group is capable of accepting various small ions of different valence, giving this structural arrangement a remarkable versatility.

## Introduction

A new complex oxide of $\mathrm{Y}, \mathrm{Si}$, and Be was first observed during studies on the $\mathrm{BeO}-\mathrm{Y}_{2} \mathrm{O}_{3}$ binary phase diagram. Its composition was determined by crystallographic analysis and by analogy with isostructural minerals to
be $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$. It often coexisted with $\mathrm{Y}_{2} \mathrm{BeO}_{4}$ whose crystal structure has recently been determined by Harris \& Yakel (1967).

Melilite is a complex silicate mineral which varies in composition from åkermanite, $\mathrm{Ca}_{2} \mathrm{MgSi}_{2} \mathrm{O}_{7}$, to gehlenite, $\mathrm{Ca}_{2} \mathrm{SiAl}_{2} \mathrm{O}_{7}$. Its crystal structure was first eluci-

